Copied to
clipboard

G = C2xC23.46D4order 128 = 27

Direct product of C2 and C23.46D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xC23.46D4, C24.181D4, C23.44SD16, C4:C4.50C23, C4.Q8:63C22, C22:C8:67C22, (C2xC8).311C23, (C2xC4).287C24, (C2xD4).77C23, C23.663(C2xD4), (C22xC4).438D4, D4:C4:77C22, C22.35(C2xSD16), C2.13(C22xSD16), C4:D4.153C22, (C23xC4).557C22, (C22xC8).348C22, C22.547(C22xD4), C22.121(C8:C22), (C22xC4).1004C23, C4.59(C22.D4), (C22xD4).358C22, C22.110(C22.D4), (C2xC4.Q8):34C2, C4.97(C2xC4oD4), (C22xC4:C4):34C2, (C2xC22:C8):35C2, (C2xC4).847(C2xD4), C2.26(C2xC8:C22), (C2xD4:C4):39C2, (C2xC4:C4):117C22, (C2xC4:D4).57C2, (C2xC4).845(C4oD4), C2.52(C2xC22.D4), SmallGroup(128,1821)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C2xC23.46D4
C1C2C4C2xC4C22xC4C2xC4:C4C22xC4:C4 — C2xC23.46D4
C1C2C2xC4 — C2xC23.46D4
C1C23C23xC4 — C2xC23.46D4
C1C2C2C2xC4 — C2xC23.46D4

Generators and relations for C2xC23.46D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=fbf=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=ce3 >

Subgroups: 540 in 256 conjugacy classes, 108 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, C23, C23, C23, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C22:C8, D4:C4, C4.Q8, C2xC22:C4, C2xC4:C4, C2xC4:C4, C2xC4:C4, C4:D4, C4:D4, C22xC8, C23xC4, C23xC4, C22xD4, C22xD4, C2xC22:C8, C2xD4:C4, C2xC4.Q8, C23.46D4, C22xC4:C4, C2xC4:D4, C2xC23.46D4
Quotients: C1, C2, C22, D4, C23, SD16, C2xD4, C4oD4, C24, C22.D4, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C23.46D4, C2xC22.D4, C22xSD16, C2xC8:C22, C2xC23.46D4

Smallest permutation representation of C2xC23.46D4
On 64 points
Generators in S64
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(41 58)(42 59)(43 60)(44 61)(45 62)(46 63)(47 64)(48 57)
(1 19)(2 41)(3 21)(4 43)(5 23)(6 45)(7 17)(8 47)(9 52)(10 59)(11 54)(12 61)(13 56)(14 63)(15 50)(16 57)(18 28)(20 30)(22 32)(24 26)(25 44)(27 46)(29 48)(31 42)(33 49)(34 64)(35 51)(36 58)(37 53)(38 60)(39 55)(40 62)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(49 63)(50 64)(51 57)(52 58)(53 59)(54 60)(55 61)(56 62)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 12)(2 34)(3 10)(4 40)(5 16)(6 38)(7 14)(8 36)(9 28)(11 26)(13 32)(15 30)(17 49)(18 58)(19 55)(20 64)(21 53)(22 62)(23 51)(24 60)(25 35)(27 33)(29 39)(31 37)(41 50)(42 59)(43 56)(44 57)(45 54)(46 63)(47 52)(48 61)

G:=sub<Sym(64)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,57), (1,19)(2,41)(3,21)(4,43)(5,23)(6,45)(7,17)(8,47)(9,52)(10,59)(11,54)(12,61)(13,56)(14,63)(15,50)(16,57)(18,28)(20,30)(22,32)(24,26)(25,44)(27,46)(29,48)(31,42)(33,49)(34,64)(35,51)(36,58)(37,53)(38,60)(39,55)(40,62), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12)(2,34)(3,10)(4,40)(5,16)(6,38)(7,14)(8,36)(9,28)(11,26)(13,32)(15,30)(17,49)(18,58)(19,55)(20,64)(21,53)(22,62)(23,51)(24,60)(25,35)(27,33)(29,39)(31,37)(41,50)(42,59)(43,56)(44,57)(45,54)(46,63)(47,52)(48,61)>;

G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,57), (1,19)(2,41)(3,21)(4,43)(5,23)(6,45)(7,17)(8,47)(9,52)(10,59)(11,54)(12,61)(13,56)(14,63)(15,50)(16,57)(18,28)(20,30)(22,32)(24,26)(25,44)(27,46)(29,48)(31,42)(33,49)(34,64)(35,51)(36,58)(37,53)(38,60)(39,55)(40,62), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12)(2,34)(3,10)(4,40)(5,16)(6,38)(7,14)(8,36)(9,28)(11,26)(13,32)(15,30)(17,49)(18,58)(19,55)(20,64)(21,53)(22,62)(23,51)(24,60)(25,35)(27,33)(29,39)(31,37)(41,50)(42,59)(43,56)(44,57)(45,54)(46,63)(47,52)(48,61) );

G=PermutationGroup([[(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(41,58),(42,59),(43,60),(44,61),(45,62),(46,63),(47,64),(48,57)], [(1,19),(2,41),(3,21),(4,43),(5,23),(6,45),(7,17),(8,47),(9,52),(10,59),(11,54),(12,61),(13,56),(14,63),(15,50),(16,57),(18,28),(20,30),(22,32),(24,26),(25,44),(27,46),(29,48),(31,42),(33,49),(34,64),(35,51),(36,58),(37,53),(38,60),(39,55),(40,62)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(49,63),(50,64),(51,57),(52,58),(53,59),(54,60),(55,61),(56,62)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,12),(2,34),(3,10),(4,40),(5,16),(6,38),(7,14),(8,36),(9,28),(11,26),(13,32),(15,30),(17,49),(18,58),(19,55),(20,64),(21,53),(22,62),(23,51),(24,60),(25,35),(27,33),(29,39),(31,37),(41,50),(42,59),(43,56),(44,57),(45,54),(46,63),(47,52),(48,61)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E···4N4O4P8A···8H
order12···222222244444···4448···8
size11···122228822224···4884···4

38 irreducible representations

dim111111122224
type++++++++++
imageC1C2C2C2C2C2C2D4D4C4oD4SD16C8:C22
kernelC2xC23.46D4C2xC22:C8C2xD4:C4C2xC4.Q8C23.46D4C22xC4:C4C2xC4:D4C22xC4C24C2xC4C23C22
# reps112281131882

Matrix representation of C2xC23.46D4 in GL6(F17)

100000
010000
0016000
0001600
000010
000001
,
180000
0160000
000100
001000
0000160
0000016
,
1600000
0160000
0016000
0001600
000010
000001
,
100000
010000
001000
000100
0000160
0000016
,
1320000
140000
004000
0001300
0000125
00001212
,
1600000
1310000
001000
0001600
0000160
000001

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,8,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,1,0,0,0,0,2,4,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,12,12,0,0,0,0,5,12],[16,13,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1] >;

C2xC23.46D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{46}D_4
% in TeX

G:=Group("C2xC2^3.46D4");
// GroupNames label

G:=SmallGroup(128,1821);
// by ID

G=gap.SmallGroup(128,1821);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,436,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*e^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<